SIFT: An Algorithm for Extracting Structural Information From Taxonomies
نویسنده
چکیده
In this work we present SIFT, a 3-step algorithm for the analysis of the structural information represented by means of a taxonomy. The major advantage of this algorithm is the capability to leverage the information inherent to the hierarchical structures of taxonomies to infer correspondences which can allow to merge them in a later step. This method is particular relevant in scenarios where taxonomy alignment techniques exploiting textual information from taxonomy nodes cannot operate successfully.
منابع مشابه
3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کاملDPML-Risk: An Efficient Algorithm for Image Registration
Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...
متن کاملStructure- and Extension-Informed Taxonomy Alignment
Ontologies and concept taxonomies help software systems organize data more effectively for particular application domains. Ontologies also enable sharing and integration of data from different domains and data sources. However, ontologies from different domains are rarely identical; thus, there is need for techniques to find alignments between concepts in different ontologies and taxonomies. In...
متن کاملPrediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information
MOTIVATION There has been great expectation that the knowledge of an individual's genotype will provide a basis for assessing susceptibility to diseases and designing individualized therapy. Non-synonymous single nucleotide polymorphisms (nsSNPs) that lead to an amino acid change in the protein product are of particular interest because they account for nearly half of the known genetic variatio...
متن کاملPresenting a method for extracting structured domain-dependent information from Farsi Web pages
Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1602.07064 شماره
صفحات -
تاریخ انتشار 2016